A sequel to the Gutenberg Project e-book on perfumery and its preparation
![]() |
| A sequel to the Gutenberg Project e-book on perfumery and its preparation |
A. Finest Cologne Water (Eau de Cologne Supérieure).
C. Cologne Water (ordinary).
English (Mitcham) oil of lavender should always be used when it is desired to produce perfumes of first quality.
The essential oils are dissolved in the alcohol, the other substances are macerated in the solution for one month, and the liquid decanted.
Lily (Extrait de Lys).
Oil of bitter almond 150 grains.
Extract of jasmine 7 oz.
Oil of bitter almond 75 grains.
Oil of nutmeg 60 grains.
A. Eau de Mille Fleurs.
Extract of cassie 1 pint.
Essence of cedar 1 pint.
Extract of jasmine 1 pint.
Tincture of musk 6 fl. oz.
Extract of neroli 1 pint.
Extract of patchouly 1 pint.
Tincture of vanilla 1 pint.
Extract of violet 1 pint.
Essence of vetiver 1 pint.
C. Eau de Mille Fleurs a Palmarose.
Fleurs des Champs.
(For perfuming hair oils and pomades.)
Tincture of ambergris 3 pints.
Myrtle (Extrait de Myrthe).
Narcissus (Extrait de Narcisse).
Pink (Extrait d’Œillet).
Polyanthus.
Patchouly (Extrait de Patchouli).
(Artificial, almost indistinguishable from the genuine.)
Macerate for from one to two weeks, and filter.
The odor of Rondeletia has not thus far been isolated, at least in Europe (the plant is indigenous to the Antilles). The oils of lavender and clove together constitute the odor known in perfumery as Rondeletia. By increasing the quantity of the two oils, the strength of the perfume may be heightened.
Rose Odors.
The art of perfumery has endeavored to fix this most magnificent of all odors, and we must confess that in this case it has succeeded in solving the problem in a manner unequalled in any other perfume. We are able to imitate not only the pure rose odor, but also those of its several varieties such as the tea rose, moss rose, etc., both as to character and intensity. Fine rose odors can be produced in their full fragrance only from pomade extracts; the various rose oils furnish inferior products.
Rosa Centifolia, A (Finest Quality).
China Rose (Roses Jaunes).
Extract of rose 1 qt.
194
Extract of cassie 1 qt.
Heliotrope Bouquet (Fleurs Solsticiales).
Syringa.
Bouquet de Virginie.
Essence of geranium 1 pint.
Tincture of musk 1 qt.
Extract of orange flower 1 qt.
Extract of santal 1 pint.
Tincture of tonka 1 qt.
Tincture of vanilla 1 qt.
Essence of rose (triple) 1 pint.
This is the finest among the true violet perfumes. Less fine, though still of prime quality, is the following:
A cheap and pleasant perfume: the following is far superior.Verbena B.
This “Extract of Verbena B” is a modification of that given previously, on page 164.
Extrait de Verveine C.
The oil of turpentine must be clear like water, and most carefully rectified. If it can be obtained of good quality, the oil distilled from the leaves or needles of Pinus sylvestris, commonly known as pine-needle oil or fir-wool oil, is to be preferred for this purpose. Still better is the oil obtained from Pinus Pumilio.
The great majority of the above-described perfumes are made with extracts prepared from pomades; hence their cost199 of production is considerable and the selling-price high. For the requirements of the middle classes, quite fragrant perfumes are manufactured by dissolving the cheaper essential oils in ordinary alcohol, and various new odors can be obtained by mixing several of them. The extracts made with cheap oils are well suited to this purpose. The oils most frequently used for such articles are those of bergamot, lemon, orange peel, lavender flowers (French), lemon grass, nutmeg, clove, and santal. The alcohol must be free from fusel oil and have a strength of at least 70% Tralles.
CHAPTER XV.
AMMONIACAL AND ACID PERFUMES.
A. Ammoniacal Perfumes.
Ammonia (ammonia water) has a disagreeable odor and exerts a very caustic effect on the lachrymal glands. Despite these properties, ammonia, in a highly dilute condition and mixed with other aromatics, finds manifold application in perfumery and serves particularly for the manufacture of the so-called smelling salts, or inexhaustible salts, used for filling smelling bottles.
The liquid or caustic ammonia, however, is not so suitable for the purposes of the perfumer as the carbonate of ammonia, which when pure forms colorless crystals usually covered with a white dust (consisting of bicarbonate of ammonia); these, undergoing gradual decomposition, give off the odor of ammonia and hence are more lasting in smelling bottles than the pure liquid ammonia.
The main essential for both of these substances is purity. Caustic ammonia as well as carbonate of ammonia are now obtained on a large scale from “gas liquor,” but the crude products always retain some of the penetrating odor of coal tar which renders them valueless for the purposes of the perfumer. We must, therefore, make it a rule to use nothing but perfectly pure materials which, moreover, are easily to be had in the market.
The aromatics are placed in a bottle, the ammonia is added, and the bottle vigorously shaken; the solution is soon effected, and the turbid liquid can be at once filled into bottles.
According to the material from which the containers are made, different methods must be adopted. It is necessary to give the liquid such form as to prevent its flowing out when the vessel is inverted; this is important, as the bottles are often carried in dress pockets and the ammonia destroys most colors. As a rule the vessels are filled with indifferent porous substances which are moistened with the perfume. If the container is made of box wood, ivory, porcelain, or some other opaque material, it is filled with fibres201 of asbestos or with very small pieces of sponge, and as much perfume is poured in as the substance can take up; the vessels are then inverted into a porcelain plate and allowed to drain, and are finally closed with a loose plug of cotton. If the container is transparent, it is better to use, instead of the asbestos or sponge which do not look neat, either small pieces of white pumice stone, powdered glass, small white glass beads, or crystals of sulphate of potassium which is insoluble in the perfume.
White Smelling Salt (Sel Blanc Parfumé).
While the first-named ammoniacal preparation is called a salt, it is really nothing but perfumed caustic ammonia; but white smelling salt is what its name indicates and can be perfumed as desired by the consumer; but as only certain scents harmonize with ammonia, not every odor can be employed; the most appropriate are oils whose odor resembles that of rose, and the oils of nutmeg and cinnamon.
Cover the jar and leave it at rest. After some days the mixture will have changed into a firm mass of monocarbonate of ammonia which is rubbed to a coarse powder, perfumed, and filled into bottles. The above quantities require:
The oils are poured into a mortar and rubbed up with about one-tenth of the salt; of this perfumed salt enough is added to the several portions of the mass, and triturated until202 the odor is equally distributed. For cheaper smelling salts oils of geranium and cassia may be substituted for the oils of rose and cinnamon.
Preston Salt (Sel Volatil).
In this perfume ammonia is continually generated; the salt is prepared by mixing chloride of ammonium or sal-ammoniac in fine powder with freshly slaked lime. Fine or cheap perfume is added, according to the grade desired. The mixture of sal-ammoniac and slaked lime continually develops small amounts of ammonia—it takes a long time until the decomposition is complete, and for this reason a bottle filled with Preston salt retains the odor of ammonia for several years.
Eau de Luce.
This is the only ammoniacal perfume used in a liquid form. It is made according to the following formula:
Tincture of ambergris 10½ oz.
The tinctures are mixed with the ammonia by agitation and immediately filled into bottles; the liquid should have a milky appearance. At times 150 grains of white soap is added which aids in imparting to the liquid the desired milky appearance. In fine eau de Luce the odor of ambergris should predominate; this can be easily effected by increasing the amount of tincture of ambergris.
B. Acid Perfumes.
As there is a group of perfumes which is distinguished by their characteristic odor of ammonia and which we have therefore called ammoniacal, so there is an important series of arti203cles containing acetic acid which are used cosmetically as so-called toilet vinegars, and in some washes.
Ordinary vinegar, i.e., water containing four to six per cent of acetic acid, has, as is well known, a not unpleasant refreshing odor and a pure acid taste. Pure acetic acid, now made in large quantities and of excellent quality, is known commercially as glacial acetic acid. In commerce, it is customary to designate any acetic acid containing 85 or more per cent of the absolute acid, as glacial acetic acid. In chemical or pharmacopœial nomenclature, however, the glacial acid is meant to be as near 100% as possible. In perfumery, an 85% acid is sufficiently strong. It forms a colorless liquid with a narcotic odor and an intensely acid taste; it congeals into glassy crystals at a temperature of 8.5° C. (47° F.). The latter property is of importance as showing the purity of the acid. Concentrated acetic acid, like alcohol, dissolves aromatic substances, with which it forms perfumes which differ from those made with alcohol mainly by their peculiar refreshing after-odor which is due to the acetic acid.
Acetic acid can be saturated with various odors and thus furnish fine perfumes; but for so-called toilet vinegars which are used as washes the acetic acid must be properly diluted, since the concentrated acid has pronounced caustic properties, reddens the skin, and may even produce destructive effects on sensitive parts such as the lips.
Aromatic Vinegar (Vinaigre Aromatique).
Instead of the perfumes here given, finer odors may be employed for the production of superior toilet vinegars; thus204 we find vinaigre ambré, au musc, à la violette, au jasmin, etc., according to the perfume used. As concentrated acetic acid dissolves most aromatic substances the same as alcohol, all alcoholic perfumes may have their counterparts in acetic acid; but the aromatics should never be added in so large amount as to mask the characteristic odor of the acetic acid. A very pleasant vinegar may be produced by combining an alcoholic with an acid perfume, as in the following:
Spiced Vinegar (Vinaigre aux Épices).
for two weeks, mix the liquids, and filter them into a bottle which should not be completely filled. The longer this mixture is allowed to season in the bottle, the finer will be the aroma; for in the course of time the alcohol and acetic acid react on each other and form acetic ether, which likewise possesses a pleasant aromatic odor.
Certain aromatic vinegars, like ammoniacal perfumes, are filled into smelling bottles containing the same porous substances for their absorption, namely, sponge, pumice stone, crystals of potassium sulphate, etc.
FORMULAS FOR TOILET VINEGARS.
This should be colored a pale rose tint with one of the dye-stuffs to be enumerated hereafter. The use of true wine vine205gar is to be recommended for this and all the following toilet vinegars, as the œnanthic ether it contains has a favorable effect on the fineness of the odor.
Macerate the solids with the alcohol and vinegar.
As this vinegar is made by mixing an alcoholic perfume with acetic acid, so all other alcoholic perfumes may be employed for a like purpose; but the quantities must be determined by experiment, for the various aromatics differ in the intensity of their odor.
The water should be added after the ethers have been dissolved in the glacial acetic acid.
Orange-Flower Vinegar.
Macerate for two weeks, and filter.
To be stained with tincture of krameria (rhatany).
CHAPTER XVI.
DRY-PERFUMES.
As a matter of course, dry perfumes are of greater antiquity than fluid; aromatic substances require merely to be dried in order to retain their fragrance permanently. The oldest civilized people known in history—Egyptians, Assyrians, Persians, Babylonians, and the Jews, as numerous passages in the Bible prove—used dried portions of plants, leaves, flowers, and resins as perfumes and incense.
To this day there is kept up quite a trade in Valeriana celtica, a strong-scented Alpine plant, and in powdered amber, with the Orient, where they are used for scent bags and in208cense respectively. The Catholic Church retains to the present time the Jewish rite of burning incense, and in our museums will be found urns, taken from Egyptian graves, from which pleasant odors escape even now after nearly four thousand years, owing to the aromatic resins with which they are filled. It is said, too, that the delightful volatile odors of our handkerchief perfumes were first prepared by an Italian named Frangipanni conceiving the idea of treating a dry mixture of different aromatic plants with alcohol and thus imparting the odor they contained to the latter.
Not all aromatics can be made into sachet powders; it is well known that the delightful odor of violets changes into a positively disagreeable smell when the flowers are dried, and the same remark applies to the blossoms of the lily of the valley, mignonette, lily, and most of our fragrant plants. On the other hand, some portions of plants, especially those in which the odorous principle is contained not only in the flower but in all parts of the plant, as in the mints, sage, and most Labiatæ, remain fragrant for a long time after drying and hence can be employed for sachets. Besides the plants named, lavender, rose leaves, the leaves of the lemon and orange tree, Acacia farnesiana, patchouly herb, and some other plants continue fragrant after drying.
Any vegetable substance to be used for sachets must be completely dried so as to prevent mould. The drying should be effected in a warm, shady place, sometimes in heated chambers; direct sunlight and excessive heat injure the strength of the odor, a portion of the aromatics becoming resinified and volatilized. If artificial heat is employed, a temperature between 40 and 45° C. (104-113° F.) is most suitable.
The external form of this class of preparations varies of course with the public for which it is intended. Expensive sachets are sold in silk bags with different ornamentation; those intended for the Orient are generally put up as small silk209 cushions richly ornamented with gold and colors to suit Oriental taste. Cheap sachets are sold in envelopes or in round boxes. It is customary to have the ingredients ground or finely powdered, for which purpose small hand-mills will generally suffice.
CHAPTER XVII.
FORMULAS FOR DRY PERFUMES (SACHETS).Ceylon Sachet Powder.
The oil is mixed with the finely powdered or rasped woods and distributed in the mass by trituration.
Field Flower Sachet Powder.
Frangipanni Sachet Powder.
Cassia ½ lb.Musk 75 grains.Cloves ½ lb.Rose leaves ½ lb.Santal wood 1 lb.Orris root 1 lb.
Mille Fleurs Sachet Powder.
This name is applied in Spain to a dish prepared from various remnants of food. The olla podrida of the perfumer is made from the remnants of the aromatic vegetable substances after their extraction with alcohol, petroleum ether, etc. Although vanilla, cinnamon, nutmeg, etc., be repeatedly extracted, they still retain their characteristic odor, though somewhat fainter, and thus they can be used with advantage for sachet powders intended for filling bags, cushions, etc. If mixed in corresponding proportions, they can be made use of for all the sachets here enumerated. No definite formula can be given for a peculiar dry perfume to be called Olla podrida; the olfactory organ is the best guide.
The musk is rubbed up with gradually increased quantities of the patchouly herb and with the addition of the oil of patchouly; the intimate mixture of the powder saturated with musk and oil of patchouly and the rest of the powder is effected by prolonged stirring of the two powders in a large vessel. The same process is followed with all other dry powders in which a small amount of a solid with intense odor or of an essential oil is to be mixed with a large quantity of powder.
Oil of cinnamon 75 grains.
Many widely differing perfumes are sold in the market under this name; a good formula for its preparation is the following:
The admixture of fine white sand, table salt, or powdered glass or marble, etc., is made merely for the purpose of increasing the weight.
which is simply finely rasped santal wood, is also sometimes sold as rose sachet powder when it has received an addition of some oil of geranium.
Mix intimately in a porcelain mortar.
CHAPTER XVIII.
THE PERFUMES USED FOR FUMIGATION.
According to the use made of them, perfumes for fumigation may be divided into two groups: those which develop their fragrance on being burned, and those which do so on being merely heated. The former group includes pastils and ribbons, the latter fumigating powders and waters.
Fumigating Pastils.
French—Pastilles fumigatoires; German—Räucherkerzen.
Pastils consist in the main of charcoal to which enough saltpetre is added to make the lighted mass glow continuously215 and leave a pure white ash. To this mass are added various aromatic substances which are gradually volatilized by the heat and fill the surrounding air with their perfume. It is important to observe that only ordinary saltpetre (nitrate of potassium) is to be used for this purpose, and not the so-called Chili saltpetre (nitrate of sodium) which becomes moist in the air. For ordinary pastils finely rasped fragrant woods such as cedar or santal are frequently employed. During the slow combustion, however, the wood gives off products of a pungent or disagreeable odor such as acetic acid and empyreumatic products, which lessen the fragrance. Fine pastils are composed of resins and essential oils and are usually formed into cones two-fifths to four-fifths of an inch high, by being pressed in metal moulds.
Fumigating pastils are manufactured as follows. Each solid ingredient is finely powdered by itself, and the necessary quantities are then put into a wide porcelain dish and intimately mixed with a flat spatula. In order to confine the dust, the dish is covered with a cloth during this operation. The mixture being completed, the essential oils are added, together with enough mucilage of acacia to form a plastic mass to be kneaded with the pestle, and which after drying will have a sufficiently firm consistence.
The charcoal for this and all other pastils should be made from soft woods (willow, poplar, etc.). The characteristic of these pastils is the amber they contain (the offal from manufactories is used) and which on ignition gives off a peculiar216 odor much prized in the Orient, rather than in Europe or America.
Pastilles du Sérail.
This formula is here given as usually quoted. It may be stated, however, that the opium may be omitted entirely, as it neither contributes to the fragrance, nor produces, by being burned in this manner, any of the supposed exhilarating or intoxicating effects which it may produce when used in other forms or employed in other ways.
Baguettes Encensoires (Fumigating Pencils).
Melt the benzoin, charcoal, shellac, and olibanum in a bright iron pan at the lowest possible heat; take the pan from the fire and add the other ingredients, heat being again applied from time to time to keep the mass in a liquid state. The plastic mass is rolled out on a marble slab into rods the thickness of a lead pencil. Such a pencil need be but lightly passed over a hot surface to volatilize the aromatics it contains.
Pastilles Odoriférantes.
This and the following formula give the finest mixtures for pastils.
Pastilles Enbaumées.Charcoal 2 lb.Saltpetre 2¾ oz.Benzoic acid, sublimed 1 lb.Musk 15 grains.Civet 15 grains.Oil of lemon grass 30 grains.Oil of lavender 15 grains.Oil of clove 15 grains.Oil of thyme 30 grains.Oil of cinnamon 30 grains.
Poudre d’Encens (Incense Powder).
Dissolve the saltpetre in water, saturate the powders with the solution, dry the mass, and again reduce it to powder.218 This powder, strewn on a warm surface such as the top of a stove, takes fire spontaneously and gradually disappears.
Fumigating Papers and Wicks (Bruges Ribbons).
French—Papier à fumigations. Ruban de Bruges; German—Räucherpapiere. Räucherbänder.
Fumigating papers are strips impregnated with substances which become fragrant on being heated; such a strip need merely be placed on a stove or held over a flame in order to perfume a whole room. Fumigating papers are divided into two groups: those meant to be burned, and those meant to be used repeatedly. The former, before being treated with aromatics, are dipped into saltpetre solution; the latter, in order to render them incombustible, are first dipped into a hot alum solution so that they are only charred by a strong heat, but not entirely consumed.
The paper is dipped into a solution of 3½ to 5½ ounces of saltpetre in water; after drying it is immersed in a strong tincture of benzoin or olibanum and again dried. An excellent paper is made according to the following formula
Benzoin 5½ oz.Santal wood 3½ oz.Olibanum 3½ oz.Oil of lemon grass 150 grains.Essence of vetiver 1¾ oz.Alcohol. 1 qt.
For use, the paper is touched with a red-hot substance, not a flame. It begins to glow at once without bursting into flame, giving off numerous sparks and a pleasant odor.
This paper is prepared by dipping it in a hot solution of 3½ oz. of alum in one quart of water; after drying, it is saturated with the following mixture:
This paper, when heated, diffuses a very pleasant odor and can be used repeatedly. It does not burn, and strong heat only chars it. Some manufacturers make inferior fumigating papers by dipping the alum paper simply in melted benzoin or olibanum.
C. Fumigating Ribbons
are nothing but fine flat lamp wicks treated first with saltpetre solution and then with the preceding mixture. The wick is rolled up and placed in a vessel provided with a lamp burner. It is inserted in the burner like any other wick and when lighted burns down to the metal and goes out unless screwed up higher. Fumigating vessels provided with these wicks are very practical because, if artistic in form, they form quite an ornament to the room and can be instantly set in operation. A French formula gives the following mixture for saturating the wick
Fumigating Waters and Vinegars (Eaux Encensoires, Vinaigres Encensoires).
These fluids are nothing but strong solutions of various aromatics in alcohol, a few drops of which suffice, if evaporated on a warm plate, to perfume a large room. The following is a good formula for fumigating water.
Musk 150 grains.
Of course, this liquid must be filtered after prolonged maceration. By adding to it 1½ oz. of glacial acetic acid we obtain the so-called fumigating vinegar which is very useful for expelling bad odors.
Fumigating Powders (Poudres Encensoires).
These powders which need only to be heated in order to diffuse one of the most pleasant odors, are easily prepared by intimately mixing the ground solids with the oils by means of a spatula. We add three renowned formulas for the manufacture of such powders.
APPENDIX.
Some Specialties.
Besides the preparations enumerated in the preceding pages, we find in perfumery some products which are in favor on account of their fragrance and are suitable for scenting ladies’ writing-desks, sewing-baskets, boxes, and similar objects. They find their most appropriate use in places where an aromatic odor is desired, while there is no room for keeping the substances themselves. These must therefore be put into a small compass, and the aromatics chosen should be distinguished by great intensity and permanence of odor.
We subjoin a few formulas for the manufacture of such specialties, and add the remark that besides the aromatics there given other substances may be used in their preparation; but that the presence of benzoin, musk, or civet, even in small amount, is always necessary, since these substances, as above stated, not only possess an intense and permanent odor, but have the valuable property of imparting lasting qualities to more volatile odors.
It is a good plan, too, to keep on hand two kinds of these specialties—one containing musk, the other none—for the reason that the musk odor is as disagreeable to some persons as it is pleasant to others.
Spanish Skin (Peau d’Espagne, Spanisch Leder).
The article sold under this name resembles in some respects sachets or scent bags and is made as follows.
Take a piece of wash-leather (chamois), trim it to a square shape, and leave it for three or four days in the following mixture:
At the end of the time named remove the leather from the liquid, let it drain, spread it on a glass plate, and when dry coat it on the rough side, by means of a brush, with a paste prepared in a mortar from the following ingredients:
Benzoic acid, sublimed 150 grains.
The leather is then folded in the centre, smoothed with a paper-knife, put under a weight, and allowed to dry. The dried leather forms the so-called perfume skin which retains its fine odor for years. Instead of the above alcoholic liquids any desired alcoholic perfume may be used; especially suitable are those containing oils of lemon grass, lavender, and rose, since they are not very volatile, and when combined with musk and civet remain fragrant for a long time. A sufficiently large piece of perfume skin inserted in a desk pad or placed among the paper will make the latter very fragrant. Spanish skin is chiefly used for this purpose, as well as for work, glove, and handkerchief boxes, etc. It is generally inclosed in a heavy silk cover.
If leather be thought too expensive, four to six layers of blotting-paper may be perfumed in the same way and properly inclosed. Thin layers of cotton wadding between paper can also be thus perfumed and used for filling pin cushions, etc.
Spanish Paste.
Mix the following substances intimately in a porcelain mortar, and add water drop by drop until a doughy mass results.
This paste, divided into pieces about the size of a hazelnut, is used for filling the so-called cassolettes or scent boxes which are carried in the pocket, etc., like smelling bottles. Owing to its pasty consistence this preparation can be used for perfuming jewelry (small quantities are inserted within the diamond settings), fine leather goods, belts, and other articles. It is unnecessary to lengthen the list; every practical perfumer will know what objects need perfuming
CHAPTER XIX.
HYGIENIC AND COSMETIC PERFUMERY.
Perfumery is not merely called upon to act in an æsthetic direction and gladden the senses; it has another and more important aim, that is, to aid in some respects the practice of medicine. It is not necessary to point out that in this sense, too, it acts in an æsthetic way; for health and beauty are one and inseparable.
The field to perfumery with reference to hygiene is extensive, comprising relegatedthe care of the skin, the hair, and the mouth. But we also find in commercial perfumery articles which possess no medicinal effect and serve merely for beautifying some parts of the body, for instance, paints and hair dyes. As it is not possible to separate perfumes with hygienic effects from cosmetics, we shall describe the latter in connection with the former.
To repeat, hygienic perfumery has to deal with such substances as have really a favorable effect on health. No one will deny that soap takes the first place among them. Soap promotes cleanliness, and cleanliness in itself is essential to health. But it would exceed the scope of this work were we to treat in detail of the manufacture of soap and its employment in the toilet; we must confine ourselves to some specialties exclusively made by perfumers and into the composition of which soap enters. We do so the more readily since perfumers are but rarely in a position to make soap, and in most cases find it more advantageous to buy the raw material, that is, ordinary good soap, from the manufacturer and to perfume it.
Next to soap in hygienic perfumery stand the so-called emulsions and creams (crêmes) which are excellent preparations for the skin and pertain to the domain of the perfumer.
The human skin consists of three distinct parts: the deepest layer, the subcutaneous cellular tissue which gradually changes into true skin; the corium or true skin (the thickest layer); and the superficial scarf skin or epidermis which is very thin and consists largely of dead and dying cells; these are continually shed and steadily reproduced from the corium.
The skin contains various depressions, namely, the sudoriparous glands which excrete sweat; the sebaceous glands which serve the purpose of covering the skin with fat and thereby keep it soft, glossy, and supple; and lastly the hair follicles which contain the hairs, an appendage to the skin.
The main object of hygienic perfumery with reference to the skin is to keep these glandular organs in health and activity; it effects this by various remedies which, besides promoting the general health, improve the appearance of the skin.
As a special group of preparations is intended exclusively for the care of the skin, so another class is devoted to the preservation of the hair, and still another to the care of the mouth and its greatest ornament, the teeth. Accordingly the preparations belonging under this head will be divided into three groups—those for the skin, the hair, and the mouth.
CHAPTER XX.
PREPARATIONS FOR THE CARE OF THE SKIN.
Pure glycerin is a substance that has a powerful beautifying effect on the skin, by rendering it white, supple, soft, and glossy; no other remedy will clear a sun-burnt skin in so short a time as glycerin. An excellent wash may be made by the perfumer by mixing equal parts of thick, colorless glycerin and orange-flower water (or some other aromatic water with fine odor), possibly giving it a rose color by the addition of a very small amount of fuchsine. Concentrated glycerin must not be used as a wash, because it abstracts water from the skin and thereby produces a sensation of heat or burning.
Besides common soap, the so-called emulsions, meals, pastes, vegetable milks and creams are the best preparations for the care of the skin; in perfumery they are even preferable to soap in some respects because they contain not only substances which have a cleansing effect like any soap, scented or not, but at the same time render the skin clearer, more transparent, and more supple.
Emulsions.
Many perfumers make a definite distinction between two groups of emulsions which they call respectively “emulsions” and “true emulsions.” By “emulsions” they mean masses which have the property of changing on contact with water into a milky fluid or becoming emulsified; the term “true emulsions” is applied to such preparations as already contain228 a sufficient amount of water and therefore have a milky appearance. Hence the difference between the two preparations lies in the lesser or greater quantity of water, and is so variable that we prefer to describe them under one head.
The cause of the milky appearance of the emulsins on coming in contact with water is that they contain, besides fat, substances which possess the property of keeping the fat suspended in form of exceedingly minute droplets which make the entire fluid look like milk. As a glance through the microscope shows, the milk of animals consists of a clear fluid in which the divided fat droplets (butter) float; these by their refractive power make the milk appear white.
While soaps always contain a certain quantity of free alkali, a substance having active caustic properties, emulsions include very little if any alkali, and, since they possess the same cleansing power as soap without its disadvantages with reference to the skin, their steady use produces a warm youthful complexion, as well as smoothness and delicacy of the skin.
Glycerin is of special importance in the composition of emulsions. Besides the above-mentioned property of this substance of keeping the skin soft and supple, it acts as a true cosmetic by its solvent power of coloring matters: a skin deeply browned by exposure to the sun is most rapidly whitened by the use of glycerin alone. Moreover, glycerin prevents the decomposition of the preparations and keeps them unchanged for a long time. This quality has a value which should not be underestimated; for all emulsions are very apt to decompose and become rancid owing to the finely divided fat they contain. Under ordinary conditions, only complete protection against light and air can retard rancidity, which is accompanied by a disagreeable odor not to be masked by any perfume; an addition of glycerin, which we incorporate in all emulsions, makes them more permanent owing to the antiseptic property of this substance.
Recent years, however, have made us acquainted with a substance which in very minute quantities—one-half of one per cent of the mass to be preserved by it—prevents decomposition and rancidity of fats. This is salicylic acid, a chemical product which, being harmless, tasteless, and odorless, should be employed wherever we wish to guard against destructive influences exerted by air, fermentation, etc. While formerly all emulsions were made only in small amounts, just sufficient for several weeks’ use, salicylic acid enables us to manufacture larger quantities at once and to keep them without much fear of their spoiling. However, even the presence of salicylic acid is no guaranty against deterioration, if other precautions are neglected. The products should be kept in well-stoppered bottles or vessels, in a cool and dark place. All substances cannot be preserved by salicylic acid, and there are certain ferments or fungi which resist the action of salicylic acid. If chloroform is not objectionable in any of these preparations—and only so much is necessary as can be held in actual solution by the liquid, on an average three drops to the ounce—this preservative is preferable to salicylic acid.
The only fats used in the preparation of emulsions are expressed oil of almonds, olive oil, and lard. Almond oil is best made by immediate pressure of the bruised fruits, since fresh almond meal likewise finds application in perfumery; olive oil and lard must be very carefully purified. This is done by heating them for one hour with about ten times the quantity of water containing soap (one per cent of the quantity of fat to be purified). They are then treated five or six times with pure warm water until the latter escapes quite neutral. If the water turns red litmus paper blue, it would indicate the presence of free alkali (soap); if it turns blue litmus paper red, it would prove the presence of free fatty acids (rancid fat). Either one of these substances, especially the latter, would injure the quality of the product. The fat230 should be absolutely neutral and have no influence on either kind of litmus paper; then its quality may be pronounced perfect.
CHAPTER XXI.
FORMULAS FOR THE PREPARATION OF EMULSIONS, MEALS, PASTES, VEGETABLE MILK, AND COLD-CREAMS.
A. Emulsions.
Almond Cream.—Melt ten pounds of purified lard in an enamelled iron pot or a porcelain vessel, and while increasing the temperature add little by little five pounds of potash lye of 25% strength, stirring all the time with a broad spatula. When fat and lye have become a uniform mass, 2¾ to 3½ ounces of alcohol is gradually added, whereby the mixture acquires a translucent, crystalline appearance. Before the alcohol is added three-fourths to one ounce of oil of bitter almond is dissolved in it. The soapy mass thus obtained is called “almond cream” (crême d’amandes) and may be used alone for washing. For making Amandine take of—
In the manufacture the following rules should be observed.
Effect the mixture in a cool room, the cellar in summer, a fireless room in winter. Mix the ingredients in a shallow,231 smooth vessel, best a large porcelain dish, using a very broad, flat stirrer with several holes. The sugar is first dissolved in the water and intimately mixed with the almond cream. The essential oils are dissolved in the almond oil contained in a vessel provided with a stop-cock. The oil is first allowed to run into the dish in a moderate stream under continual stirring. The mass soon grows more viscid, and toward the end of the operation the flow of oil must be carefully restricted so that the quantity admitted can be at once completely mixed with the contents of the dish. Well-made amandine must be rather consistent and white, and should not be translucent. If translucency or an oily appearance is observed during the mixture, the flow of oil must be at once checked or enough almond cream must be added to restore the white appearance, under active stirring.
As amandine is very liable to decompose, it must be immediately filled into the vessels in which it is to be kept, and the latter, closed air-tight, should be preserved in a cool place. By adding ¾ ounce of salicylic acid, amandine may be made quite permanent so that it can be kept unchanged even in a warm place.
We have described the preparation of amandine at greater length because its manufacture requires some technical skill and because the preparation of all other cold-creams corresponds in general with that of amandine.
Glycerin Emulsions. A. Glycerin Cream.
Melt the wax and spermaceti by gentle heat, then add the almond oil, next the glycerin mixed with the rose water, and232 lastly the oil of rose which may also be replaced by some other fragrant oil or mixture. If the preparation is to be used in summer, it is advisable to increase the wax by one-half, thus giving the mass greater consistence.
Mix the soap with the glycerin, gradually add the oil (as for amandine), and finally the aromatics.
Mix in the same order as given under Amandine.
In place of the huiles antiques named (i.e., fine oils saturated with the odors of the corresponding flowers) any other233 huile antique may be used and the cream then called by the name of the flower whose odor it possesses. Such creams with genuine huiles antiques are among the finest preparations known in perfumery and of course are high-priced, owing to the cost of the huiles antiques.
Olivine.Gum acacia ½ lb.Yolk of egg 10 yolks.Olive oil 4 lb.Soap 7 oz.Water 8 oz.Sugar 5½ oz.Oil of bergamot 2 oz.Oil of lemon 2 oz.Oil of clove 1 oz.Oil of orange peel ¾ oz.Oil of thyme 75 grains.Oil of cinnamon 75 grains.
The gum, sugar, water, and yolk of eggs are first intimately mixed and gradually added to the olive oil containing the essential oils.
B. Meals and Pastes.
Simple Almond Paste (Pâte d’Amandes Simple).
Put the bitter almonds in a sieve, dip them for a few seconds in boiling water, when they can be easily deprived of their brown skin; carefully bruise them in a mortar, and place them in a glazed pot set in another kept full with boiling water; pour over them two quarts of the rose water heated to near the boiling-point. Keep up the heat under continual stirring until the almond meal and rose water form a uniform mass free from granules; in other words, until the meal is changed into paste. The pot is now allowed to cool somewhat, when the rest of the rose water and the oils dissolved in alcohol are added. Almond paste should have a uniform, butter-like consistence if the first part of the operation has been carefully performed.
Almond and Honey Paste (Pâte d’Amandes au Miel).
Almond Meal (Farine d’Amandes).
Almond meal here means the bran left after expressing the oil from sweet almonds. First mix the powdered orris root intimately with the essential oils and triturate the mass235 with the almond bran. Other essential oils may also be used for perfuming the mass.
The pistachio nuts are blanched in the same manner as almonds (see under Simple Almond Paste), and then reduced to a meal.
C. Vegetable Milk.
The several varieties of vegetable milk are merely emulsions containing sufficient water to give them a milky appearance. They are used as such for washes and are in great favor. Owing to the larger amount of water they contain, they are more liable to decompose than the preparations described above, since the fats present in them easily become rancid on account of their fine division in the milk.
In order to render these preparations more stable, they receive an addition of about five to ten per cent of their weight of pure glycerin which enhances their cosmetic effect. The addition of about one-half of one per cent of salicylic acid is likewise to be recommended, as it makes them more stable
In the following pages we shall describe only the most important of these preparations usually made by the perfumer. In this connection we may state that by slightly modifying the substances used to perfume them, new varieties of vegetable milk can be easily prepared.
Every vegetable milk consists in the main of a base of soap, wax, and spermaceti, and an aromatic water which gives236 the name to the preparation. This composition is intended to keep suspended the fatty vegetable substances (almond or pistachio meal, etc.), thus producing a milky appearance.
Vegetable milks are made as follows.
Melt the soap with the wax and spermaceti at a gentle heat. Prepare a milk from the vegetable substance and the aromatic water (e.g., unexpressed almonds and rose water) by careful trituration, strain it through fine silk gauze into the vessel containing the melted mixture of soap, wax, and spermaceti, stir thoroughly, let it cool, and add the alcohol holding in solution the essential oils, the glycerin (and the salicylic acid), under continual stirring. The alcohol must be added in a very thin stream, otherwise a portion of the mass will curdle. The coarser particles contained in the milk must be allowed to settle by leaving the preparation at rest for twenty-four hours, when the milk can be carefully decanted from the sediment and filled into bottles for sale.
Lilac Milk (Lait de Lilas).
In place of lilac-flower water and huile antique de lilas, lilacin (terpineol) may be used, a sufficient quantity (about 1 oz.) being dissolved in the alcohol. But the lilacin must be pure and of clean odor.
Virginal Milk (Lait Virginal).
This preparation differs from all other milks sold in perfumery in that it consists of some aromatic water with tinc237ture of benzoin and tolu. In making it, pour the aromatic water in a very thin stream into the tincture under vigorous stirring. If the water flows in too rapidly, the resins present in the tincture separate in lumps; but if slowly poured in, the resins form minute spheres which remain suspended. The preparation is named after the aromatic water it contains: Lait virginal de la rose, à fleurs d’oranges, etc. Its formula is:
Cucumber Milk (Lait de Concombres).
Dandelion Milk.
Dandelion juice is the bitter milk sap of the root of the common dandelion (Leontodon taraxacum); it should be expressed immediately before use. The rose water may be replaced by some other aromatic water or even ordinary water; but the latter should be distilled, otherwise the lime it contains would form an insoluble combination with the soap.
Bitter-Almond Milk (Lait d’Amandes Amères).
Rose Milk (Lait de Roses).
Pistachio Milk (Lait de Pistaches).
D. Cold-Creams and Lip Salves.
In the main they resemble in their composition the emulsions and vegetable milks, but differ by their thick consistence which renders them suitable for being rubbed into the skin.239 Cold-creams are really salves perfumed with one of the well-known odors which give them their names. Fat forms the basis of these mixtures and gives them their hygienic effect, as it imparts fulness and softness to the skin. Every well-made cold-cream should have the consistence of recently congealed wax and should yield to the pressure of the finger like pomatum. It should be noted that the addition of very thick glycerin will increase the effect of the cold-cream and improve its fine transparent appearance; but this substance must be added with great care, otherwise the mass will not possess the required firmness.
In making cold-cream, a mixture of wax, spermaceti, and expressed almond oil must be combined with an aromatic water and an essential oil. The first part of the operation is easy; the wax and spermaceti are melted at the lowest possible temperature, and the almond oil is added under continual stirring. It is more difficult to unite the other substances with this base; the aromatic water is admitted in a thin stream under vigorous stirring (or whipping, or churning), and when it forms a uniform mass with the contents of the mortar the remaining substances are stirred in and the still fluid mass is poured into the vessels intended for it, and allowed to congeal.
Cold-creams are usually sold in tasteful porcelain jars or vases. To guard against rancidity of the mass, the vessels are closed either with ground stoppers or with corks covered with tin foil. The essential oils should be added last, when the mass has cooled to the congealing-point; if added before, too much of them is lost by evaporation.
We give below several approved formulas for the preparation of some favorite cold-creams, and repeat that new varieties can be produced by introducing any desired odor into the composition.
Glycerin Cold-Cream A.
Expressed oil of almond 2 lb.
Wax 2½ oz.
Spermaceti 2½ oz.
Glycerin 7 oz.
Oil of bergamot ¾ oz.
Oil of lemon ¾ oz.
Oil of geranium ¾ oz.
Oil of neroli 150 grains.
Oil of cinnamon 150 grains.
Rose water 1 lb.
Glycerin Cold-Cream B.
Expressed oil of almond 2 lb.
Wax 4½ oz.
Spermaceti 4½ oz.
Glycerin ½ lb.
Oil of rose 150 grains.
Civet 30 grains.
Camphor Ice (Camphor Cold-Cream).
Camphor Ice (Pâte Camphorique).
This mixture, which is rather firm, is frequently poured into shallow porcelain boxes; sometimes it is colored red with alkanet root.
Camphor Balls (Savonettes Camphoriques).
Savonette is generally understood to mean a soap cast in spherical moulds; this preparation is, as a rule, likewise sold in this form.
The aromatic substances, having been comminuted, are thoroughly triturated with the other ingredients, and the mass is kept for twenty-four hours at a temperature of 50 to 60° C. (112-140° F.), when it is carefully decanted from the sediment, which is treated again with another mass of the same substances for thirty-six to forty-eight hours.
Divine Pomade B.
The solid substances are macerated for forty-eight hours with the warm marrow, the liquid perfumed marrow is then strained off and mixed with the orange-flower water.
Mecca balsam has been a rare article in commerce for many years. That which is usually sold as such is more or less adulterated or an imitation. The genuine was derived from Balsamodendron Opobalsamum Kunth.
The cucumber juice is carefully heated to 60 or 65° C. (140-149°F.), rapidly filtered from the curds, and at once added to the rest of the mass.
The benzoin is first macerated with the warmed fat for twenty-four hours, and this aromatic fat is treated in the usual manner.
Lip Salve A (Pomade Blanche pour les Lèvres).
Red Lip Salve B (Pomade à la Rose Pour les Lèvres).
The beautiful red color which distinguishes this preparation is produced with alkanet root; the mass, before the essential oils are added, being macerated for from six to eight hours, under frequent stirring, with the comminuted root, and then decanted from the sediment.
The procedure is the same as for pomade à la rose
Almond Balls (Savonettes d’Amandes).
Rosebud Cold-Cream.
Almond oil 2 lb.Wax 2½ oz.Spermaceti 2½ oz.Rose water 2 lb.Oil of rose 75 grains.Oil of geranium 75 grains.
Violet Cold-Cream (Crême de Violettes).
APPENDIX.
Nail Powder (Poudre pour les Ongles; Fingernagel-Pulver).
The finger nails, being an appendage to the skin, belong under the head of the Care of the Skin; we therefore give a formula for preparing the powder used for imparting smoothness and gloss to the nails. For use, some of the powder is poured on a piece of soft glove leather and the nails are rubbed until they shine.
The oxide of tin must be an impalpable powder and is mixed with the other substances in a mortar.
CHAPTER XXII.
THE PREPARATIONS USED FOR THE CARE OF THE HAIR (POMADES AND HAIR OILS).
The hair, the beautiful ornament of the human body, requires fat for its care and preservation, for there are but few persons whose scalp is so vigorous that the hair can derive sufficient nourishment from it to maintain its gloss and smoothness.
Among the ancient Greeks, Romans, and Germans various ointments were in use for the care of the hair. In Rome there was even, as we have stated in an earlier part of the book, a special guild of ointment-makers or unguentarii. They employed a process for making their ointments fragrant which resembles that of maceration in present use.
The so-called pomades (from pomum, apple) were prepared by sticking a fine apple full of spices and placing it for a long time in liquid fat which absorbed the odor of the spices.
In the present state of chemical science, the basis of every pomade or hair oil is formed by some fat perfumed with aromatic substances and at times colored. The fats generally used are lard, beef marrow, tallow, bears’ grease, olive or almond oil; some of the firmer fats receive an addition of a certain amount of paraffin, spermaceti, or wax, in order to give the pomade greater consistence. As in the manufacture of246 all the finer articles, it is essential that whatever fat is employed should be perfectly pure; only fat which is absolutely neutral, i.e., free from acid, can be used, and any sample with but a trace of rancidity (containing free fatty acids) should be rejected on account of the penetrating odor peculiar to several of these acids.
Manufacturers who aim at the production of fine goods spare neither trouble nor expense in order to obtain perfectly pure fats.
Fats are purified for the purposes of the perfumer in the following manner:
The fat is melted in a bright iron pot or enamelled vessel with three times the quantity of water containing in solution about one per cent (of the weight of the fat) of alum and one per cent of table salt. Fat and water are well stirred with a broad flat ladle or some mechanical arrangement within the boiler. After the mass has remained at rest for some time, the curdled solid matters are skimmed from the surface. The time required for this operation can be much shortened by the use of a pump which raises the fat and water from the boiler and returns them in a fine spray.
When fats with some degree of rancidity are to be made suitable for the purposes of the perfumer, 0.5% of caustic soda lye is added to the water instead of the alum.
After this treatment is completed, the fat must be washed in order to free it from the substances with which it was purified. Formerly this washing was done in a manner resembling the grinding of oil colors. The fat was placed on a level stone plate and kneaded with a muller with flat base under a continual stream of water flowing from above, until the fat was clean. This expensive hand labor is now performed by machines, the fat being treated with water in vertical mills.
No matter how carefully a fat was purified, it may happen that the pomades made from it, if kept long in stock, may sub247sequently become rancid—a circumstance which may destroy the reputation of a factory. Fortunately we know two substances which materially counteract the tendency of fats to become rancid: salicylic acid and benzoin. Either of these substances is added to many perfumery articles, especially pomades, in order to prevent rancidity; an admixture of from one-one-thousandth to five-one-thousandths parts of solid salicylic acid suffices, according to our experiments, for the purpose; of benzoin we need about three-fourths of an ounce for every quart of fat; the resin is only partly soluble in fat, but imparts to it its vanilla-like odor. For the finest pomades sublimed benzoic acid is used, in the proportion of about 150 to 240 grains to the quart of fat.
CHAPTER XXIII.
FORMULAS FOR THE MANUFACTURE OF POMADES AND HAIR OILS.
In manufacturing perfumery two groups of pomades are distinguished—those with a hard base, and those with a soft base. By base is meant the fat which is the vehicle of the odor in every pomade. The consistence of the substance depends upon its melting-point; lard and beef marrow, having a low melting-point, furnish soft pomades; while beef and mutton tallow, which often receive an addition of paraffin, wax, or spermaceti in order to make them firmer, have a higher melting-point and serve for hard pomades.
French perfumers put on the market some very fine pomades consisting of the fat which has served for the absorption of odors by maceration, enfleurage, etc., and which has been treated with alcohol for the extraction of the odors (so-called248 washed pomades). No matter how long such a fat is treated with alcohol, it tenaciously retains a portion of the odor to which the great fragrance of these pomades is due and which has given them their reputation.
If the pomades resulting from the following formulas should turn out too soft—a fact depending on the climate of the place of manufacture—they may receive an addition of a mixture of equal parts of paraffin, wax, and spermaceti, in portions of respectively five per cent at each addition, until the desired ointment-like consistence is attained.
Tincture of cantharides is prepared by prolonged maceration of ¾ ounce of powdered cantharides in one quart of alcohol.
The almond oil alone is first macerated with the alkanet root until, when added to the other ingredients, it imparts a beautiful red color to the pomade.
Double Pomades.
These pomades are put on the market in excellent quality especially by French manufacturers. They consist of a mixture of washed pomades and huiles antiques. The respective quantities must be chosen according to the climate of the country for which the articles are intended. Colder countries require equal parts by weight of pomades and oils; warmer climates, two parts of fat to one of oil
Crystallized Oil (Huile Crystallisée).
The addition of spermaceti and paraffin causes the mixture to assume a crystalline form on cooling, the appearance improving in proportion as the cooling is slow and gradual. First melt the paraffin and spermaceti on a water bath, add the huiles antiques, mix thoroughly by prolonged stirring, and pour the finished product into the vessels in which it is to be sold. These vessels are previously warmed to 60 or 70° C. (140-158°F.), and very slowly after filling, so as to secure a beautiful crystalline mass. A second quality of crystalline hair oil is made according to the following formula:
Blossom Pomade (Pomade à Fleurs).
Expressed oil of almond 4 lb.Jasmine pomade 28 oz.Rose pomade 28 oz.Violet pomade 28 oz.Oil of bergamot ½ oz.Oil of lemon 150 grains.
Bear’s Grease Pomade (Pomade à Graisse d’Ours).
This pomade is rather consistent; if it is to be made still firmer for summer use or warm climates, the almond oil should be diminished and the lard increased in proportion, or some tallow and wax added. The pomade is made by mixing the oil and lard, adding next the pomades and huiles antiques, and finally the essential oils. The temperature should not be higher than suffices to keep the mass liquid; the mixture is effected by vigorous stirring, and is then at once, though gradually, cooled.
Beef-Marrow Pomade (Pomade à Moëlle de Bœuf).
Marrow Cream (Crême de Moëlle).
The public is accustomed to receive the last two pomades in the form of froth. This can be easily effected by whipping the pomade during cooling with an egg-beater until it is solidified.
Cinchona Pomade (Pomade à Quinquine).
Macerate the finely powdered bark in the fat for some hours, add the Peru balsam, strain through a cloth, and incorporate the essential oils. The pomade is vaunted as a hair tonic, as well as
Tanno-Quinine Pomade,
which is prepared in the same way; the only difference being the addition of 150 grains of tanni
Orange-flower Pomade (Pomade à Fleurs d’Oranges).
Heliotrope Pomade (Pomade de Héliotrope).
Expressed oil of almond 6 lb.
The pomade is completely liquefied after being mixed and allowed to congeal in the vessels in which it is marketed. If successful, the product must be quite transparent or at least decidedly translucent.
The powdered beans are stirred into the melted fat, in which they remain for several days, the fat being agitated from time to time; when it smells strong enough, it is strained through fine linen, and the tonka beans are treated with another quantity of fat.
Violet Pomade (Pomade des Violettes).
Vanilla Cream (Crême de Vanille).
In making this pomade the material is treated the same as in preparing tonka pomade. Ordinary vanilla pomade is made by triturating:
Expressed oil of almond 2 lb.
First triturate the balsam with the almond oil and gradually add the lard. Another, much better process is the following:
Dissolve the vanillin and balsam of Peru in about 4 oz. of alcohol. Melt the lard at as low a temperature as possible, then add the solution, stir until it is well incorporated, and afterward repeatedly until the mass is cold.
Pomade Philocome.
This pomade has a delightful odor but is expensive; an inferior and much cheaper philocome is made as follows:
Pomades are usually colored—rose pomade, red; reseda pomade, green; violet pomade, violet, etc. For this purpose aniline colors are frequently used; they must be dissolved in glycerin and added to the fat, as they are insoluble in the latter. The coloring matter is added when the pomades are finished, before they are allowed to congeal.
B. Hair Oils.
These differ from pomades mainly by containing huiles antiques instead of washed pomades; they are therefore more or less liquid and are used for the hair as much as pomades.
Benzoated Oil (Huile à Benjamin).
The essential oils are mixed, and the almond oil is added in small portions under continual stirring.
Heliotrope Hair Oil (Huile Héliotrope).
The burdock root is macerated for two days in the warm oil, which is then filtered and the other ingredients are added.
The alkanet root in coarse powder must be macerated in the warm almond oil until it acquires a deep red color.
Expressed oil of almond 8 lb.
Mix by stirring, and allow to settle for two weeks in a completely filled bottle.
Huile Philocome.
Inclose the powdered tonka beans in a linen bag, which is hung into the cold oil and allowed to macerate for several weeks. The same process is employed for the following:
CHAPTER XXIV.
PREPARATIONS FOR THE CARE OF THE MOUTH.
Besides the red lips and the gums, the teeth in particular ornament the mouth. Unfortunately there are but few persons who can boast of a perfectly healthy set of teeth, which is found as a normal condition only among savages and animals. The chief causes of the admitted fact that most persons have some defect in the mouth—bad teeth, pale gums, offensive odor—lie in part in our civilization with the ingestion of258 hot and sometimes sour food, in part in the lack of attention bestowed on the care of the mouth by many people. The care of the mouth is most important after meals and in the morning; particles of food lodge even between the most perfect teeth and undergo rapid decomposition in the high temperature prevailing in the mouth. This gives rise to a most disagreeable odor, and the decomposition quickly extends to the teeth.
Perfectly normal healthy teeth consist of a hard, brilliant external coat, the enamel, which opposes great resistance to acid and decomposing substances. But unfortunately the enamel is very sensitive to changes of temperature and easily cracks, thus admitting to the bony part of the teeth such deleterious substances and leading to their destruction. The bulk of the tooth consists of a porous mass of bone which is easily destroyed, and thus the entire set may be lost.
Hygienic perfumery is able to offer to the public means by which a healthy set of teeth can be kept in good condition and the disease arrested in affected teeth, and by which an agreeable freshness is imparted to the gums and lips. While true perfumes may be looked upon as more or less of a luxury, the hygiene of the mouth is a necessity; for we have to deal with the health and preservation of the important masticatory apparatus which is necessary to the welfare of the whole body, so that the æsthetic factor occupies a secondary position, or rather results as a necessary consequence from a proper care of the mouth.
With no other hygienic article have so many sins been committed as with those intended for the teeth; we have had occasion to examine a number of tooth powders, some of them very high-priced, which were decidedly injurious. Thus we have known of cases in which powdered pumice stone, colored and perfumed, has been sold as a tooth powder. Pumice stone, however, resembles glass in its composition and acts on259 the teeth like a fine file which rapidly wears away the enamel and exposes the frail bony substance. It needs no further explanation to prove the destructive effects of such a powder on the teeth.
Many person prize finely powdered wood charcoal as a tooth powder, and to some extent they are right. Wood charcoal always contains alkalies which neutralize the injurious acids, besides traces of products of dry distillation which prevent decomposition. But these valuable properties are counteracted by the fact that charcoal is always more or less gritty, or, being insoluble, will lodge between the teeth and form the nucleus for the lodgement of other substances.
In compounding articles for the mouth and teeth—tooth powders and mouth washes—the objects aimed at are to neutralize the chemical processes that injure the teeth and gums, and to restore freshness and resisting power to the relaxed gums and mucous membranes.
Remnants of food left in the mouth after meals soon develop acids which attack the teeth; they are neutralized by basic substances or alkalies which counteract them.
The formation of organic acids from food remnants is caused by microscopic fungi (schizomycetes) which adhere to the teeth (so-called tartar) in the absence of cleanliness; against these parasites there are at our disposal a number of substances which kill them rapidly and thus for a time arrest the process of decomposition; they are therefore called antiseptics.
Another group of ingredients acts especially on such abnormal conditions of the membranous and fleshy parts of the mouth as manifest themselves by colorless, easily bleeding gums. It is mainly compounds of the tannin group which strengthen the gums and are known as astringents.
In compounding articles for the teeth it has thus far unfortunately not been customary to combine several of the sub260stances having the above properties, the general rule being to incorporate only one in the composition, and some so-called tooth lotions consist even of aromatics alone. Such articles perfume the mouth, but have no hygienic effect upon it.
Among the essential oils, however, there is one which should form a part of every article intended for the care of the mouth, provided it can remain unchanged in the presence of the other ingredients, which would not be the case where permanganate of potassium is used. Oil of peppermint and other mint oils exert a very refreshing influence on the mucous membranes of the mouth, in which they leave a sensation of freshness lasting for some time.
We give below a number of formulas for the manufacture of articles for the care of the mouth, as to the value of which the reader can form his own opinion from what has been stated. Finally it may be observed that several of the so-called secret preparations for the care of the mouth are arrant humbugs, worthless substances being sold at exorbitant prices and, worse yet, lacking the vaunted hygienic effect owing to their chemical composition.
The articles for the care of the mouth and teeth may be divided into tooth pastes, tooth powders, tooth tinctures or lotions, and mouth washes.
A. Tooth Pastes.
The soap should be good, well-boiled tallow soap; it is mixed with the other ingredients (the sugar is to be previously261 dissolved in the water) by thorough and prolonged stirring, and is usually sold in shallow porcelain boxes. The talcum or French chalk is a soft mineral with a fatty feel and is a common commercial article.
This tooth soap and other similar preparations for the care of the mouth are frequently colored rose red. Of course only harmless colors can be used. The most appropriate are rose madder lake and carmine.
Tooth Paste (Pâte Dentifrice).
The prepared chalk used in this and many other articles is pure precipitated carbonate of lime. It is made from pieces of white marble, the offal from sculptors’ workshops, which are placed in wide porcelain or glass vessels and covered with hydrochloric acid, when abundant vapors of carbonic acid are given off. When the development of carbonic acid has ceased, the liquid is allowed to stand at rest for several days with an excess of marble, whereby all the iron oxide is separated. This is necessary, otherwise the preparation would not be white, but yellowish. The liquid is filtered and treated with a solution of carbonate of soda (sal soda), in water as long as any white precipitate results. This precipitate is washed with pure water on a filter, and when slowly dried it forms a fine, brilliant white powder. Crystalline calcium chloride may also be purchased, dissolved in water, and treated with the soda solution to obtain the white precipitate. The quantity of262 madder lake in the above formula is given within the limits to form light or dark red tooth paste.
B. Tooth Powders.
Homœopathic Chalk Tooth Powder.
Camphorated Chalk Tooth Powder.
The charcoal must be derived from some soft wood; willow, poplar, or buckthorn are among the most appropriate.
Cuttlefish-Bone Tooth Powder.
Cachous are of a pillular composition, and used not so much for the teeth as to impart fragrance to the breath.
They are made as follows:
Boil the solids with water until a pasty mass results which becomes firm on cooling. The aromatics are then added, and the mass is rolled into pills which are covered with genuine silver foil. One of these pills suffices to remove the odor of tobacco, etc., completely from the mouth.
Pastilles Orientales.
Add the essential oils to the powdered solids, mix intimately, and add enough water to form a stiff dough, to be made into pills which when chewed remove the odor of tobacco or other unpleasant odors.
Chinese Tooth Powder.
The pumice stone must be ground into the finest powder and levigated, before being mixed with the other ingredients. Note our remarks on pumice stone on page 258.
C. Tooth Tinctures (Lotions) and Mouth Washes (Essences Dentifrices).
The solids are macerated in the alcohol, the essential oils are dissolved in the filtered liquid, and lastly the rose water is added.
Eau de Botot.
This tooth tincture, which is quite a favorite, is made in different ways; the compositions made according to the French and English formulas are considered the best. For this and many other tooth tinctures rhatany root is also frequently used. Rhatany root is derived from Krameria triandra, a South American plant. Its alcoholic tincture has a red color.
B. English Formula.
Macerate the myrrh and santal wood in the alcohol, then add the Cologne water, and lastly the sugar and borax dissolved in the water.
Cologne water with myrrh is made in the same way, by substituting a like weight of myrrh for the camphor.
Kino contains an astringent, a variety of tannin, and forms a dark red solution with alcohol.
Eau de Mialhe.
A small quantity of this, rinsed about the mouth, removes every trace of bad odor.
Potassium permanganate easily dissolves in distilled water and forms a beautiful violet solution, a few drops of which are placed in a glass of water for use. This salt is one of the most valuable articles for the teeth; it has the property of readily giving off oxygen to organic substances and hence immediately destroys all odor in the mouth by oxidizing the organic bodies; it also removes at once the odor of tobacco smoke. After rinsing the mouth with this solution, it is well268 to use some peppermint water for polishing the teeth. This mouth wash leaves brown stains on linen and other materials as well as on the skin; such spots can only be removed with acids (hydrochloric, oxalic, etc.).
Salicylic acid is a substance possessing strong antiseptic properties; therefore, when this mouth wash is used after meals, the occurrence of any bad odor, even in persons with defective teeth, is prevented and the progress of caries is arrested, so that the acid may be considered one of the most valuable substances in hygienic perfumery.
Dissolve the salicylic acid in the warm alcohol mixed with water; add to the still warm solution the orange-flower water and the oil of peppermint dissolved in some of the alcohol.
The essential oils are dissolved in the alcohol, and this solution mixed with the water.
Eau de Violettes.
CHAPTER XXV.
COSMETIC PERFUMERY.
In cosmetic perfumery, use is made chiefly of articles which serve to beautify some parts of the body by artificial means; for instance, to impart to pale cheeks a youthful freshness or to restore to prematurely gray hair its original appearance. In so far as the former object is attained also by the preparations discussed in Chapters XXI., XXII., XXIII., and XXIV., they likewise belong to the domain of cosmetic perfumery; for health and beauty are inseparably connected.
Though we have separated hygienic from cosmetic perfumery, we have done so only in order to draw the line between preparations whose regular use really improves the bodily health, and those which temporarily cover a defect of certain parts of the body.
Cosmetics may also be divided into several groups—those for beautifying the skin, as paints and toilet powders; and those for the care of the hair. The latter are subdivided into hair washes, hair dyes, so-called hair tonics, depilatories, and preparations for dressing the hair, i.e., for making it glossy and fixing it.
CHAPTER XXVI.
SKIN COSMETICS AND FACE LOTIONS.
The use of skin cosmetics and paints is of remote antiquity, but varies in different nations according to their civilization and their sense of beauty. While among certain Oriental nations dark blue rings around the eyes, with yellow lips and nails, pass for beautiful, the European prizes only a white skin with a delicate tinge of red; Italian ladies in the middle ages used the dark red juice of the fruit of the deadly night-shade as a paint, hence the name bella donna, i.e., beautiful lady. (According to Matthiolus, the name herba bella donna arose from the fact that Italian ladies used a distilled water of the plant as a cosmetic.) Owing to its marked effect on the eyes, by dilating the pupil and increasing the lustre, this juice also heightens the brilliancy of the eye, though at the expense of its health.
While in the last century face-painting was a universal fashion, it is nowadays resorted to only by persons whose skin requires some artificial help. But nobody desires that the cosmetic should be perceptible on the skin. Hence it must be laid down as a rule that paints and all cosmetics should be so compounded that it is not easily possible to the observer to recognize that some artificial means has been employed for beautifying the skin.
We give below a number of such articles, which come as near as possible to this ideal without injuring the skin. As every skin cosmetic cannot but occlude the pores of the skin, it should be removed as soon as possible—an advice to be271 heeded particularly by actors and actresses, who must appear painted on the boards.
A. White Skin Cosmetics.
The talcum must be reduced to the finest powder, levigated, dried, and then perfumed. Owing to its unctuous nature, it readily adheres to the skin, and as it has no effect on it and does not change color, it is the best of all powders.
Liquid Bismuth White; Pearl White (Blanc Perlé Liquide).
When standing at rest, the subnitrate of bismuth sinks to the bottom, while the supernatant fluid becomes quite clear. The bottle must therefore be vigorously shaken immediately before use. When this preparation remains on the skin for some length of time, it loses its pure white color and becomes yellow, or darker, through the gradual formation of a black sulphur compound.
Venetian Chalk (Craie Venétienne).
is made exactly like the French white, above; the only difference between the two preparations is that the talcum for the latter is brought to a red heat, which, however, causes it in part to lose the power of adhering to the skin.
B. Red Skin Cosmetics (Rouges).
This superior preparation, which serves mainly for coloring the lips, is made as follows: Reduce the carmine to powder; macerate it in the ammonia in a three or four pint bottle for several days, add the other ingredients, and let it stand for a week under oft-repeated agitation. At the end of that time the bottle is left undisturbed until the contents have become quite clear, when they are carefully decanted and filled into bottles for sale.
In order to obtain this preparation in proper form, only the finest carmine should be used. That known in the market as “No. 40” is the best. This alone will produce a cosmetic that, when brought in contact with the skin, will give a vivid red color.
In place of carmine, which requires the presence of ammonia if it is to remain in solution, the anilin color known as eosine may be used. Of this, very minute amounts will be sufficient to impart the proper tint. It is impracticable to give exact proportions, as these must be determined in each case by experiment. It is necessary to avoid an excess. The tint of a liquid colored by eosine may not appear deep, and yet when it is applied to the skin a decidedly deeper stain than was desired may be produced. Hence each addition of fresh coloring matter must be carefully controlled by a practical test.
Rouge en Feuilles.
Cut from thick, highly calendered paper circular disks about 2½ inches in diameter, and cover them with a layer of273 carmine containing just enough gum acacia to make it adhere to the paper. For use, the leaf is breathed on, a pledget of fine cotton is rubbed over it, and the adhering color is transferred to the skin.
The ingredients in finest powder are mixed in a mortar by prolonged trituration, then water is added in small portions to form a doughy mass to be filled into shallow porcelain dishes about the diameter of a dollar. If the rouge is desired darker for the use of actors and dark-complexioned persons, the proportion of carmine should be increased.
This rouge, when dry, has a greenish metallic lustre; it is prepared and sold like rouge en pâte.
Bleu Végetal pour les Veines.
To the powdered solids add sufficient water to form a mass to be rolled into sticks. For use, a pencil is breathed on, rubbed against the rough side of a piece of white glove leather, and the veins are marked with the adhering color on the skin coated with pearl white. Of course, some dexterity is required to make the veins appear natural by the use of this blue color.
Rouge Alloxane (Alloxan Red; Murexide Paint).
Dissolve the alloxan in a little water and mix it intimately with any desired cold-cream. The mixture is white, but when transferred to the skin gradually becomes red. The preparation sold in Austria, etc., under the name of “Schnuda” is identical with this alloxan paint.
C. Face Lotions.
The skin often contains spots with marked color which are more or less unsightly; for instance, freckles, liver spots, mother’s marks (nævi), etc. Unfortunately we know of no remedy which radically removes them; even chemical preparations with the most energetic effects, which of course must never be employed owing to their destructive action on the skin, cannot entirely do away with these dark spots which have their seat in the lower layers of the skin. But the public demands preparations for the removal of freckles, liver spots, etc., and—obtains them. We subjoin the formulas for several of such secret remedies, but declare emphatically that none of them will completely effect the desired result.
Freckle Milk (Lait Antéphelique).
We call attention to the fact that the sublimate (bichloride of mercury) is very poisonous and must be used with the greatest care.
Freckle Lotion.
Macerate for a week and filter.
Add only enough of the alcoholic tincture of benzoin to render the liquid slightly opalescent or milky.
The soap solution is made as concentrated as possible, and the entire fluid colored with cochineal; in place of the extract of orange flower, other essences or extracts may also be employed. For use, some of the liquid is poured into the wash water.
Pulchérine.
The preceding preparations owe their activity merely to the presence of carbonate of potassium which forms an emulsion with the fat of the skin and thus resembles in its effects a mild soap. The other ingredients only serve to render the composition fragrant.
D. Toilet Powders
Toilet powders are used to impart whiteness and smoothness to the skin; hence they are merely a kind of dry cosmetic which are applied by means of a powder puff or a hare’s foot.277 Their main ingredients are starch and talcum powders, perfumed and sometimes tinted a rose-red color. It is immaterial what kind of starch is used; rice, wheat, and potato starch are equally effective, provided they are clear white and in the finest powder. In some cases the bitter-almond bran remaining after the expression of the fixed oil and the preparation of the oil of bitter almond is likewise used for toilet powders. The more thoroughly these powders are rubbed into the skin, the whiter the latter becomes and the less easily can they be detected
White Toilet Powder.
The oil must have been completely extracted from the pistachio meal, which is to be reduced to the finest powder.
Poudre à la Violette.
Poudre Blanche Surfine (Poudre de Riz).
This mixture, which is best left unperfumed, does excellent service when used to prevent an offensive odor in stockings or shoes. The inside of the stockings is dusted with the powder, and every week a teaspoonful is sprinkled into the shoes.
Skin Gloss.
Mix intimately and preserve in well-closed boxes. For use, stir some into water.
Kaloderm.
Form into a dough which is thinned with water and painted on the skin.
Rub the starch with the glycerin in a mortar until they are thoroughly mixed. Then transfer the mixture to a porcelain capsule and apply a heat gradually raised to 284° F. (and not exceeding 290° F.), stirring constantly, until the starch granules are completely dissolved, and a translucent jelly is formed. Then gradually incorporate with it the powdered soap and orris root, and lastly the oils and tincture.
CHAPTER XXVII.
HAIR COSMETICS.
The number of preparations used for the care of the hair and beard is considerable. Unfortunately we are forced to admit that the majority of them, especially those said to strengthen the scalp and to stimulate the growth of the hair, are utterly inert. Thus far we know too little of the natural conditions of growth of the hair to enable us to compound remedies which would actively aid the efforts of nature in this direction.
In like manner we cannot speak with approval of the preparations used to color the hair, either from a chemico-sanitary or from an æsthetic standpoint; many of them contain substances which positively injure the hair or impart to it an unnatural color which is detected at first sight. But a well-made cosmetic should never produce this effect, and nature must be faithfully imitated if the preparation is to deserve the name of a cosmetic.
With the so-called hair and beard elixirs almost incredible swindles are perpetrated; the practical perfumer, however, cannot advise against the use of such worthless preparations among his goods, as they are in daily demand. This is the reason why we furnish the formulas for some of these secret preparations; anybody at all familiar with the principles of chemistry and physiology will recognize their worthlessness from their composition. The only articles of practical value are those intended for cleansing the hair, for making it soft and glossy, some of the hair dyes, and the preparations for fixing the hair in certain positions.
A. Hair Washes.
Macerate the ingredients for one month. The carbonate of potassium and the alcohol cleanse the hair and remove the fat. After using this wash and drying the hair, its fat and gloss should be restored by the application of a good pomade or hair oil.
Eau Glycerinée aux Cantharides.
The tincture of cantharides is made by macerating 1¾ oz. of powdered Spanish flies (Lytta vesicatoria) in one quart of strong alcohol. The caustic ammonia has a similar cleansing effect as the carbonate of potassium; the glycerin makes the hair soft; the entire preparation is a happy combination, as it cleanses and softens the hair at the same time.
Eau de Fleurs; Extrait Végétal.
Eau de Laurier.
Boil the finely divided soap and the saffron with some distilled water until the soap is completely dissolved, add the other ingredients, mix intimately, and let stand for some days to allow the coarser particles of saffron to settle. This preparation has a particularly handsome appearance; in cut-glass bottles it shows a peculiar opalescence or iridescence; in transmitted light it represents an almost perfectly transparent, saffron-yellow liquid.
Eau Victoria.
Mix the ingredients, except the rose water, by vigorous agitation until a kind of emulsion results. Then add the rose water in small portions, shaking after each addition.
Eau de Roses.
B. Hair Tonics.
Tincture of nut-galls is made by macerating 3½ oz. of powdered nut-galls in one quart of alcohol. The tincture of cinchona in the following formula is prepared in the same manner.
Tanno-Quinine Hair Restorer.
Baume de Milan pour les Cheveux.
Rub the cantharides with the carmine to the finest possible powder; add this with the essential oils to the other ingredients.
Formulas for similar hair tonics might be given to the number of several hundreds; but we repeat what we have said above—they do not produce the desired result.
While the well-known bay rum is used more as a face lotion or refreshing skin tonic, particularly after shaving, or when perspiring in hot weather, yet it is also often used as a wash for the scalp, and is popularly believed to stimulate the growth of hair, which is in reality not the case. We shall therefore give a formula for its preparation here:
Bay Rum.
Dissolve the oils in the alcohol and add the water. Mix the liquid with about 2 oz. of precipitated phosphate of lime, and filter. It will improve by age.
Genuine bay rum is imported from the West Indies (St. Thomas, etc.), where a crude kind of alcohol, obtained in connection with the manufacture of rum from molasses, is distilled285 with the fresh leaves of the bay-tree (Myrcia acris). The oil of bay obtained from this must not be confounded with the oil of sweet bay. The latter, as it appears in commerce, is a crude mixture of a fixed with a volatile oil.
CHAPTER XXVIII.
HAIR DYES AND DEPILATORIES.
The custom of dyeing the hair is universal in the Orient; in the Occident, however, hair dyes are also frequently used, namely, to hide the grayness of the hair, sometimes to give the hair a preferred color. Hair dyes, which are very numerous, may be divided into groups—those containing the dye-stuff ready formed, and those in which it is produced in the hair by some chemical process. Some hair dyes contain substances which in their nature are decidedly injurious to the hair; such articles, of course, must be dispensed with because, if frequently employed, they would certainly lead to baldness. We shall return to this subject in connection with the several preparations.
Regarding the use of hair dyes, especially those consisting of two separate portions, we may state that it is necessary to remove the fat from the hair before applying the dye, as the chemicals in question do not adhere well to fat. The hair should be thoroughly washed once or twice with soap, and dyed when nearly dry.
When dyeing the hair the preparations should first be diluted; if the color is not deep enough, the process is repeated. If the preparation is used at once in a concentrated form, a color may result which has no resemblance to any natural tint; hair meant to be black may assume a metallic bluish-black gloss.
286
A. Simple Hair Dyes.
The ingredients are rubbed to a very fine powder and for use are mixed with water, applied to the hair, and left there until the desired tint—light brown to black—is obtained, from four to twelve hours, when the powder is removed by washing. The lime by its caustic effect acts destructively on the horny substance of the hair. Moreover, all lead preparations without exception are very injurious to the organism; hence this hair dye is to be rejected, especially as there are harmless preparations which produce the same effect.
Karsi (Teinture Orientale).
This preparation, which really comes from the Orient, is made as follows: Reduce the nut-galls to a very fine powder and roast them in an iron pan under continual stirring until they have become dark brown or almost black. This powder is triturated with the metals in fine powder and the aromatics, and preserved in a moist place. For use, some of the powder is moistened in the palm of the hand and vigorously rubbed into the hair; after a few days it assumes a deep black, natural color. The roasting changes the tannin bodies contained in the galls into gallic and pyrogallic acids which form deep black combinations with the metals, and themselves are easily transformed into brownish-black substances.
Kohol (Teinture Chinoise).
Powder the ink and the gum, and triturate small quantities of the powder with rose water until a uniform black liquid results, which must be free from granules. This liquid is placed in a bottle and the rest of the rose water added. Kohol can be used only by persons with black hair, and is employed particularly for dyeing the eyebrows. As the coloring matter of this preparation consists of carbon in a state of fine division, the dye is perfectly harmless.
Vegetable Dye.
This hair dye produces a deep black color, but cannot be recommended, as it is injurious to the hair. Its full effects appear only after the lapse of some hours.
Potassium Permanganate.
Crystalline potassium permanganate is soluble in water, forming a dark violet solution. When brought in contact with an organic substance—paper, linen, skin, horn, hair—it is rapidly decolored and imparts to the substances named a brown tint due to hydrated oxide of manganese. The hair is washed, as stated above, to remove the fat, and the dilute solution applied with a soft brush; the color is produced at once and according to the degree of dilution this innocuous preparation can be made to give any desired color from blond to288 very dark brown. Of course, this preparation can be used for the beard as well as the hair.
All the hair dyes here and elsewhere given stain the skin as well wherever they come in contact with it; hence care should be taken to protect the skin during their application.
B. Double Hair Dyes.
Silver Hair Dyes.
This and similar hair dyes consist of two preparations, preserved in bottles I. and II.; the latter, containing the silver solution, should be of dark amber-colored or black glass, as the silver salts are decomposed by light. It is utterly useless to employ blue glass for this purpose, as this admits the chemical rays of light as easily as flint glass. For use, some of the liquid from bottle I. is poured into a cup and the hair is moistened with it by means of a soft brush. The liquid from bottle II. is poured into a second cup and applied with another brush.
Brown Dye.I. (In White Bottle.)
Sulphide of potassium 7 oz.
The sulphide of potassium (liver of sulphur) appears in fragments of a liver-brown mass which readily dissolves in water. The solution must be filtered before being filled into bottles for sale, and, as it becomes turbid in the air, kept in well-closed vessels. When the two solutions are brought together, black sulphide of silver results and darkens the hair. After the use of this preparation a disagreeable odor of rotten eggs adheres to the hair, but can be easily removed by washing, especially with one of the previously mentioned hair washes.
The silver hair dye will be still better if the liquid contained in bottle II. is made by dropping into the solution, under continual stirring, ammonia water, until the precipitate first formed is again dissolved.
Melanogène.
Boil the nut-galls in the water, strain the boiling liquid through a thick cloth into the rose water, and fill the still hot mixture into bottles which must be immediately closed. (It is essential that the liquid be hot during the filling, to guard against the development of mould.)
II. (In Dark Bottle.)
Add ammonia water to the silver solution until the precipitate first formed is again dissolved.
Sulphide of sodium 120 grains.
Add ammonia water to the copper solution until the light blue precipitate first formed again dissolves to a rich, dark blue liquid. This hair dye gives a dark brown color.
Eau de Fontaine de Jouvence,
also called Auricome and Golden Hair Water, is no dye, but a bleaching agent which changes dark hair to a light blond or golden-yellow color. The preparation consists of peroxide of hydrogen, a substance possessing marked bleaching properties.
Peroxide of hydrogen, or hydrogen dioxide, is at the present time made on a large scale by many manufacturers, and readily obtainable in the market. It would therefore scarcely pay any one to prepare it himself unless he were out of reach of the usual channels of trade, so that he could not obtain the preparation in a fresh state. Nevertheless it may be useful to state how it is made. Barium dioxide (or peroxide), which is a regular article of commerce, and is a stable compound which will keep for any length of time if kept in tightly closed bottles, is treated with water until the dioxide forms with it a thin, smooth milk. This is gradually added to dilute sulphuric acid, cooled with ice or kept otherwise as cold as possible, until the sulphuric acid is almost entirely neutralized. The solution is then allowed to settle and the clear liquid drawn off. For bleaching purposes, this is pure enough. Only it must be ascertained that the amount of free acid present, without which the hydrogen dioxide does not keep well, is only small. Other acids can be used besides sulphuric, but the latter is the most convenient. If an alkali is added to hydrogen dioxide so that the reaction becomes alkaline, it will decompose very rapidly. Even under the most favorable circumstances (when acid, and kept in a cool place) it will gradually deteriorate, and finally be entirely converted into oxygen gas, which escapes, and plain water.
Peroxide or dioxide of hydrogen, when applied to the hair as a bleaching agent, must be used in a dilute condition at first. Those who use it for the first time should always make preliminary trials with the liquid upon odd bunches of hair292 (such as may at any time be procured at hair-dressers’ shops) resembling that which is to be bleached, before actually applying it to the latter.
The hair to be bleached is deprived of fat by washing with soap solution, the soap is washed out with water, and the peroxide of hydrogen applied.
Whisker Dye.
Dissolve the acetate of lead (“sugar of lead”) in the warm water, filter the solution, and add ammonia water until a precipitate ceases to form. Collect the precipitate on a filter, wash it by pouring distilled water over it eight or ten times, and while still moist introduce it into solution II. Stir repeatedly, and after twelve hours leave the vessel at rest until the solution has become clear. Then decant it from the sediment, which may be treated a second time with solution II. For use, the beard is washed with soap, and combed with a fine rubber comb dipped in the solution.
C. Depilatories.
Combinations of sulphur with the alkaline metals calcium, barium, and strontium rapidly destroy the hair; for this reason tanners use the “gas lime” from gas works, which contains calcium sulphide, for removing the hair from hides. All the depilatories used cosmetically, even rhusma employed in the Orient for removing the beard, owe their activity to the presence of calcium sulphide.
Calcium Sulphide
has usually been lauded as a perfectly harmless depilatory. This is a great mistake, however, since it has often done seri293ous harm, through careless application by persons unfamiliar with its caustic and corrosive effects. It is absolutely necessary to protect the skin against its action; otherwise superficial irritation, or even destruction of the skin may result.
Calcium sulphide cannot be made by the action of sulphuretted hydrogen upon lime. It is usually made by heating at a low red heat, in a securely closed crucible, an intimate mixture of 100 parts of finely powdered quicklime with 90 parts of precipitated sulphur. Mix together:
The resulting mass must be filled at once into an air-tight jar, as the calcium sulphide is decomposed in the atmosphere. For use, some of the mass is moistened with water, painted on the skin, and washed off with water after thirty to forty-five minutes. This and all other depilatories act only temporarily, that is, they destroy only the hair projecting above the surface without killing the hair bulbs; after some time the hair grows again and the preparation must be reapplied.
Barium Sulphide,
which is likewise used as a depilatory, is made by heating barium sulphate with charcoal, extracting the residue with water, and mixing the resulting product with starch paste. In its effects barium sulphide equals the preceding preparation, but it decomposes more readily.
Depilatory Paste.
Sodium sulphide is made by saturating strong caustic soda solution with sulphuretted hydrogen. The other ingredients are added to the solution of sodium sulphide.
Rhusma
is a depilatory made by mixing powdered quicklime (unslaked) with orpiment (yellow sulphide of arsenic). Take of:
Mix intimately and preserve the powder in tightly closed vessels. For use, take some of the powder, reduce it to a thin paste with water, and apply it to the place upon which the hairs are to be destroyed. Owing to its poisonousness and the destructive effects of the caustic lime on the skin, this preparation should never be employed in cosmetic perfumery.
CHAPTER XXIX.
WAX POMADES, BANDOLINES, AND BRILLIANTINES.
The so-called wax pomades, stick pomatum, and bandolines serve to stiffen the hair and are frequently employed by hair dressers. The former two articles possess some adhesive power by which they fasten the hair together; bandolines are mucilaginous fluids which generally contain bassorin (or vegetable mucilage present in tragacanth), quince seeds, etc.
This is usually formed into oval or round sticks which are wrapped in tin foil. They are colored and perfumed as desired. The ordinary varieties are: white, for light blond hair,295 which is left uncolored; pink, colored with carmine; brown, colored with umber; and black, colored with bone black. The coloring matters are always rubbed up with oil. Red pomatum may be colored with alkanet root, which is macerated for some time with the melted fat. The base of these preparations consists of:
The mass may be made harder or softer by increasing or diminishing the wax. The perfumes generally used are oils of bergamot, lemon, clove, and thyme, with an addition of some Peru balsam.
Hungarian Beard Wax (Cire à Moustache Hongroise.)
Rub the powdered soap with the mucilage, previously diluted with nine ounces of water, then add the wax and gly296cerin, and heat the mass on a water-bath, stirring constantly, until it becomes homogeneous. Lastly add the oils, and pour the mass into suitable moulds.
For brown or black wax the corresponding color is added. The mass is formed into sticks the thickness of a lead pencil.
C. Bandolines.
Crush the tragacanth, place it in the rose water, and leave it at rest in a warm spot, stirring occasionally, until the tragacanth has swollen to a slimy mass. Press it first through a coarse and then through a finer cloth, add a little carmine and the oil of bitter almond.
Bandoline à la Rose.
This is made like the preceding, only substituting 1½ oz. of oil of rose for the oil of bitter almond. Other varieties may be produced by the use of different odors.
D. Brillantines.
Under various names preparations are placed on the market which render the hair both soft and glossy. The chief constituent of all these articles is glycerin which is perfumed according to taste and stained reddish or violet. As many aniline colors easily dissolve in glycerin, they are generally used for this purpose. Formerly, before glycerin was obtainable in sufficient purity, brillantines were chiefly made of castor oil dissolved in alcohol, but aside from the fact that glycerin is cheaper than castor oil with alcohol, the former is preferable, as alcohol injures the hair.
CHAPTER XXX.
THE COLORS USED IN PERFUMERY.
In perfumes in which next to the odor, the appearance is of importance, the colors play a prominent part.
In handkerchief perfumes, any accidental color present is an obstacle, as it would cause stains on the material. Hence the aim is to obtain the perfumes colorless or—a highly prized quality in fine articles—they receive a pale green color which disappears on drying. Extract of cassie possesses this color, and in many cases this extract is added to perfumes for the purpose of giving them this favorite color.
Regarding the colors employed for other articles—emulsions, pomades, soaps, etc.—it may be stated as a general rule that a preparation named after a certain flower must possess the color of the latter. Hence all perfumes named after the rose should be rose red; violet perfumes, violet; those bearing the name of the lily or white rose must be colorless, etc.
The best for articles containing alcohol or glycerin are the aniline colors, both on account of their beautiful appearance and their extraordinary staining power. But an insurmountable obstacle is met with in their use for articles containing298 animal or vegetable fats which rapidly destroy many aniline colors. When a rose pomade is colored with aniline red, the fine delicate tint hardly lasts three or four weeks and changes into dirty gray. The same is true of aniline violet in violet pomade, etc.
Therefore, articles containing fat must receive other dye-stuffs, and in the following pages we briefly enumerate those we have found most appropriate; but it must be observed that all poisonous dyes must be absolutely excluded. Commercial aniline colors formerly often contained arsenic; at the present time other processes are usually employed for their preparation, not involving the employment of arsenious acid.
Yellow Colors.
Saffron.
The stigmata of Crocus sativus contain a bright yellow or orange yellow coloring matter which is easily extracted by alcohol, petroleum ether, or fat. We prefer petroleum ether in which the finely powdered saffron is macerated, the greater portion of the solvent being distilled off, and the rest of the solution is allowed to evaporate, when the pure coloring matter is left and can be easily mixed with fat. The coloring matter may also be obtained by macerating the saffron in melted lard or in olive oil.
Jonquille Pomade.
Genuine jonquille pomade, from Narcissus Jonquilla, has a handsome yellow color which is derived from the dark yellow flowers; for this reason small quantities of jonquille pomade are sometimes used for coloring pomades for the hair.
Curcuma or Turmeric.
Curcuma or turmeric root contains a very beautiful yellow coloring matter which is easily extracted by alcohol or petroleum ether. We prepare it in the same manner as stated299 under the head of saffron. Curcuma color cannot be used for articles containing free alkali, which changes it to brown.
Palm Oil.
has naturally a fine yellow color, which it imparts also to soaps prepared from it; but the color fades completely when the wet soap is exposed to the air.
Red Colors.
Carmine.
This magnificent, though very expensive color is obtained from the cochineal insect, Coccus cacti. If good carmine is not available, a substitute may be made, for the purpose of coloring perfumery articles, by powdering cochineal, treating it with dilute caustic ammonia, and, after adding some alum solution, exposing it to the air and direct sunlight, when the coloring matter separates in handsome red flakes, which are collected and dried.
Carthamin Red.
Safflower, the blossoms of Carthamus tinctorius, contains two coloring matters, yellow and red. The former is extracted with water from the dried flowers, and the residue is treated with a weak soda solution which dissolves the red coloring matter. When this solution is gradually diluted with acetic acid, the dye is precipitated, and after drying forms a mass with a greenish metallic lustre. This, when reduced to powder, is used for rouge en feuilles or rouge en tasses.
This coloring matter can also be prepared by introducing into the soda solution some clean white cotton on which the color is precipitated and can then be extracted with alcohol.
Alkanet.
This root, which is readily obtained in the market, contains a beautiful red coloring matter which can be extracted with300 petroleum ether, but is also easily soluble in fats (melted lard or warm oil). Even small amounts of it produce a handsome rose red and larger quantities a dark purple. For pomades, hair oils, and emulsions alkanet root is the best coloring matter, as it stains them rapidly, is lasting, and cheap.
Rhatany.
Rhatany root furnishes a reddish-brown coloring matter which is soluble in alcohol and is extracted with it from the comminuted root, especially for tooth tinctures and mouth washes. For the same purpose use may also be made of red santal wood and Pernambuco wood which likewise yield to alcohol, besides astringents, beautiful colors which are very suitable for such preparations.
The green coloring matter of leaves is easily extracted from them, when bruised, with alcohol, and is left behind after the evaporation of the solvent. Some powders which are to have a green color are mixed directly with dried and finely divided bright green leaves such as spinach, celery, parsley leaves, etc.
For soap it is customary to use a mixture of yellow and blue which together produce a green color. Take a yellow soap, melt it, and add to it the finest powder of smalt or ultramarine until the desired tint is obtained. Indigo-carmine cannot be used, as it would impart a blue color to the skin.
Blue Colors.
For many preparations smalt or ultramarine is employed, but these colors are insoluble. The only soluble blue colors are aniline blue and indigo-carmine; the latter has a beautiful301 and intense color, but is suitable only for pomades and not for soaps because, as stated above, it would stain the skin.
Brown
is produced by caramel, which is made by heating sugar in an iron pot until it changes into a deep black mass which is brown only in thin threads. This color dissolves easily in water (not in alcohol) and is very suitable for soaps
Black
is produced by finely divided vegetable or bone black. Liquids are colored with India ink which remains suspended for a long time owing to the fine division of the carbon.
CHAPTER XXXI.
THE UTENSILS USED IN THE TOILET.
In the toilet, besides combs and hair brushes, use is made of powder puffs, tooth brushes, and bath sponges. Powder puffs are made from swan skins, but should be used rather for the even division of the powder or paint than for its application. For the latter purpose a piece of soft glove or chamois leather is best.
The commercial tooth brushes are almost without exception objectionable owing to the stiffness of the bristles. A suitable tooth brush should be made of very soft, flexible bristles, lest it wear away the enamel.
Particular attention should be devoted to bath sponges. Their value is proportionate to the fineness of the pores, their302 softness and elasticity, and their spherical shape. Crude sponges are best cleansed by being placed in dilute hydrochloric acid which dissolves the calcareous particles adhering to them.
They are bleached as follows.
Free them as far as possible from sand and other foreign matters. Then wash them thoroughly with water, and press them. Next introduce them into a solution of permanganate of potassium containing one ounce of the salt in a gallon; leave them in this liquid two or three minutes; then take them out, express the liquid (which can be several times used over again), wash them with water until no more violet-tinted liquid runs from them, and then immerse them in a solution of one part of hyposulphite of sodium in twenty parts of water, to which immediately before dipping the sponges one part of hydrochloric acid has been added. When the sponge’s are white, remove them and wash them thoroughly with water.
After prolonged use, bath sponges lose their elasticity and softness. These properties can be restored by dipping the sponges into a mixture of one part by measure of glycerin and eight parts of water, pressing out the excess of the liquid and allowing them to dry. The small quantity of glycerin which they contain prevents their hardening.
INDEX.
Aneth, 31
Anethum graveolens, 31
Animal substances used in perfumery, 57
Anise, 21
Anti-Odorin, 278
Apple ether, 81
Aromatic substances, division of, according to their origin, 8
substances in general, 6
substances, relative strength of, 7
substances, special characteristics of, 118
substances, vegetable, chemical constitution of, 15
substances, vegetable, employed in perfumery, 20
vinegar, 203
waters, 113, 167
Aspic, 35
tolutanum, 51
Bandolines, 296
Barium sulphide, 293
Baume de Milan pour les cheveux, 283
du Pérou, 43
de Tolou, 51
Bay rum, 284
sweet, 22
West Indian, 22
Beard producer, 284
wax, 295
Bear’s-grease pomade, 250
Beef-marrow pomade, 251
cosmopolite, 180
court, 173
d’Andorre, 171
de Chypre, 172
de fleurs, 172
de flore, 176
de la cour, 171
de l’Alhambra, 169
de l’amour, 169
de Stamboul, 194
Cologne water, 266
Caryophyllus aromaticus, 30
wood, 27
flowers, 29
Citronella, 29
essence of, 153
Citrus Aurantium, 41
Bergamia, 24
limetta, 35
Limonum, 35
medica, 28
vulgaris, 41
Civet, 62
tincture of, 165
Civetta, 62
Clous de girofle, 30
Clove, 30
essence of, 157
Cold-creams and lip salves, 238
Cologne cold-cream, 242
water, 180
Colors used in perfumery, 87, 297
Concombre, 31
Convallaria perfume, 172
Convolvulus floridus, 45
scoparius, 45
Cortex Aurantii, 41
Craie venétienne, 271
Crême de Cologne, 242
de moëlle, 251
de ricine, 252
de vanille, 253
de violettes, 244
Crinochrom, 290
Crisp mint, 38
Croton Eluteria, 26
Crystallized oil, 249
Cucumber, 31
cold-cream, 242
extract of, 154
milk, 237
Cucumis sativus, 31
Elais guineensis, 42
Elder flowers, 32
Emulsions, 227, 230
Encens, 40
Enfleurage, 101
Esprit de roses triple, 161
Ess. bouquet, 175
Essence de roses blanches, 162306
Essence de roses jaunes, 161
de roses jumelles, 162
de styrax, 162
definition of, 150
des bouquets, 175
meaning of the French term, 14
of mirbane, 83
Essences dentifrices, 265
directions for making, 150
employed in perfumery, 146
fruit, 82
de pistaches, 235
Fats, 77
purification of, 77, 246
rancidity of, prevention of, 79
Fennel, 32
Fenouil, 32
Ferula Sumbul, 49
Fèves de Tonka, 52
Field-flower sachet powder, 209
Fiori d’Italia, 174
Fleurs de citron, 29
de mai perfume, 172
de Montpellier, 187
307des champs, 188
d’oranges, 41
tonics, 283
washes, 281
Handkerchief perfumes, formulas for, 169
perfumes, manufacture of, 167
Hedyosmum flowers, 33
Heliotrope, 33
bouquet, 194
extract of, 154
hair oil, 255
perfume, 176
pomade, 252
sachet powder, 210
Heliotropin, 33
Heliotropium peruvianum, 33
Hepar sulphuris, 84
Herba Majoranæ, 37
Hibiscus Abelmoschus, 38
History of perfumery, 1
Homœopathic chalk tooth powder, 262
Honeysuckle, 33
extract of, 153
perfume, 176
Hovenia perfume, 177
Huile à benjamin, 255
à l’ess-bouquet, 255
crystallisée, 249
de jasmin, 255
de mille fleurs, 188
de palme, 42
héliotrope, 255
Lait antéphelique, 274
essence of, 155
perfumes, 183
sachet powder, 210
Leap-year bouquet, 184
Lemon, 35
essence of,
grass, 30, 35
grass, essence of, 153
Lignum Camphoræ, 25
Cedri, 27
Rhodii, 45
Sassafras, 47
Lilac, 36
extract of, 153
milk, 236
Milk, vegetable, 235
Mille fleurs sachet powder, 211
Mint, 38
Moschus, 59
Moss-rose, extract of, 161
perfume, 193
Mousseline perfume, 188
Mouth, preparations for the care of, 257
washes, 265
Murexide paint, 274
Muscade, 40
Musk, 59
paste, 279
perfume, 188
tincture of, 156
leaves, 39
perfume, 189
Myrtus communis, 39
Nail powder, 244
Narcissus, 40
extract of, 157
Jonquilla, 40
perfume, 189
poeticus, 40
Nardostachys Jatamansi, 48
Navy’s nosegay, 189
of heliotrope, 124
of lily, 126
of mace, 129
of magnolia, 127
of marjoram, 127
of meadowsweet, 135
of melissa, 128
of mignonette, 133
of mirbane, 83
of myrtle, 130
of narcissus, 130
of néroli bigarade, 131
of néroli pétale, 131
of pink, 130
of Portugal, 131
of reseda, 133
of rhodium, 134
of rose, 133
of rosemary, 134
of rue, 133
of sage, 134
of sandal wood, 134
of santal, 134
of sassafras, 135
of spearmint, 129
of star-anise, 135
of sweet bay, 127
of sweet pea, 132
of Swiss herbs, 255
of syringa, 132
of thyme, 135
of turpentine, 138
of vanilla, 136
of verbena, 136
pomade, 254
à la rose pour les lèvres, 243
Salvia officinalis, 46
Tooth pastes, 260

No comments:
Post a Comment